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Note 

Time-Dependent ionization 

A numerical method is described which allows the calculation of the time-dependent 
ionization structure of a plasma heated and ionized by a given input radiation field. The 
method is sufficiently general to be applicable also to other many-state-problems, in which 
the time-dependent occupation of one state depends only linearly on the occupation of all 
other states, as long as the total number of states remains finite and the total number of 
particles is a known quantity at all times. 

INTRODUCTION 

In many astrophysical problems the accurate calculation of the physical state of a 
radiatively heated and ionized gas is very important as a link between observed 
emission and absorption line strength and deduced parameters such as densities, 
temperatures, etc. 

For local thermodynamical equilibrium LTE this link is provided by the Boltzmann 
and Saha equations together with a radiation transfer theory. However, under 
astrophysical circumstances, LTE conditions are often not satisfied. Frequently, the 
impinging radiation field is only weakly determined by the local properties of the gas 
and may be regarded as an “external” field. In this situation the photon to particle 
ratio becomes an essential quantity which determines the behavior of the gas. 

As long as the timescale for changing the photon to particle ratio is long compared 
to the timescales for ionization and recombination, the abundance of any particular 
atom or ion of a given element is described by a system of linear, inhomogeneous, 
temperature-dependent equations. Generally the temperature is unknown and must be 
calculated simultaneously from an additional energy balance equation. These inter- 
connected, simultaneous equations are solved in an iterative manner. Because of the 
nonlinearity of the problem the global existence of a unique solution cannot be 
demonstrated. However, for most practical cases, experience has shown that locally 
unique, numerically stable solutions exist. 

In many interesting cases, the timescale for establishing the ionization and energy 
equilibrium exceeds the timescale with which the photon to particle ratio changes. 
In this case the set of simple balance equations is replaced by a corresponding set of 
differential equations. We describe in this paper a new method that allows us to solve 
these equations for the abundances and temperatures of the various constituents of 
the gas. 
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THE EQUATIONS 

The density D,< of the ith ionization stage of the element with nuclear charge z can 
be described by 

with T,: electron temperature, N,: electron density, I,<: ionization rate of ions with 
nuclear charge z from ionization stage i to ionization stage i + 1, Rzi: corresponding 
recombination rate. For our application, the relevant atomic processes are: ground- 
state collisional and photo-ionization, radiative recombination and dielectronic 
recombination. These processes and the assumptions under which Eqs. (I) or similar 
types of equations are valid are described in detail by Dalgarno and McCray [I]. 

Together with Eqs. (1) the condition 

(1’) 

with N: total density of heavy particles, HZ: relative abundance of element z, must be 
satisfied for each element. 

The electron density N, is given by 

z+1 

NC(t) = 1 c (i - 1) . D&). 
i i=l 

The electron temperature T, and the temperature of heavy particles Ti , here called 
ion temperature, can be described in their time evolution by 

Pi(t) = 0.08 sl . Tf" . (T, - TJ. (4) 

In Eq. (3), GZi denotes the energy gain rate of the electron gas which in our example 
will be due to photo-ionization. It competes with the loss processes Lzi , which in our 
case are radiative recombination, dielectronic recombination, collisional ionization, 
collisional excitation, and free-free-radiation. Because of the interconnection of 
temperature and ion densities by ionization and recombination and by energy gain 
and loss the whole system of(l), (l’), (2), and (3) is strongly nonlinear. 

Whenever the timesclae for the adjustement of electron and ion temperature is 
larger than the timescale for changing the photon to particle ratio, Eq. (4) for the 
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ion temperature has to be taken into account additionally. “Ion temperature” here is 
the temperature of both neutral atoms and ions, which for the conditions here will 
always be equal. 

SOLUTION PROCEDURE 

In solving the system of ordinary, nonlinear, first-order differential equations l), 
Cl’), (2), (3), and (4) numerically, the following problems are encountered: 

Eqs. (1) and (1’) by themselves form a stiff system. 
For a given z, the largest Dzi may be some hundred (!) orders of magnitude different 

from the smallest one. During one calculation (e.g. cooling from 10’ K to lo2 K) the 
initially largest Dzi can become the finally smallest one and vice versa. The coefficients 
Zzi and R,i are different by many orders of magnitude for sufficiently different i. 
Choosing the integration step-width from the largest derivative, the computing time 
would become unacceptably long. On the other hand, too large steps could produce 
unphysical solutions as negative Dzi or, near the steady-state solution Zjzi = 0 for the 
ion densities, the equilibirum may be reached only after some unreal oscillations. 

To overcome these difficulties, we choose a solution scheme with the following 
properties: 

(a) For very small time-steps At it is a procedure of first order in At to solve the 
initial-value problem (l), (1’) and (2) with initial values Dzi(O) = Dpi . 

(b) For very large dt the steady-state solution Dzi(t) = 0 is reached in one 
calculation step independent of the initial values. 

(c) Equation (1’) is exactly fullfilled except for rounding errors. The absolute 
error in every single Dzi is only given by the machine rounding error. The relative 
error of an individual Dzi is then 

with 01 < 10, pm: machine rounding error. It may become very large for very small 
D,i , but then the ion densities themselves are too small to have any physical relevance. 

The scheme actually used has the following simple structure: The linearized 
equations (1) 

(Dam’ - Dz”i>/At = Zzi-1 . D,“i-1 - (Zzc + R,i) . D,“i + R,i+l . DFii+l (X iteration index) 

(n: iteration index) can be written implicitly 
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and solved for D> 

DIi = -At . Zziel . D&t; + (1 + dt . (Izi + R,J) . 0::’ - At * R,i+l . Di’i’:1. 

Together with 

z+1 

zlD;:l = N* Hz 0’) 

the first z equations form for a given z a linear inhomogeneous system for the z + 1 
quantities I$;‘, having a very simple structure: 

1 +At*Z,, -At.R,, 0 . . . 
-At . Iel 1 $ At . (Zzz + R,,) --At . Rz, 

. . . 0 -At . zzrxql 1 

. . . . . . . . . . . . . . . 1 
n+1 DZl 
?a+1 

D*, 

n+1 
DZ, 

D n+1 
n+1 

= 

+ 

. . . . . . . * . . . 0 
0 . . . 0 

. . . . 
0 

At . (L + R,,) --At * L+, 
1 1 

Because of the simplicity of the matrix structure the time to solve the equations 
is smaller than the time to calculate the individual matrix elements. It is very easy 
to see that (1) and (1’) yield the stationary solution for the Dz+l independent of the 
Dzi, if At is sufficiently large, as physically required. In addition to Eqs. (i) and (I’) 
and the trivial equation (2), Eqs. (3) and possibly (4) have to be integrated. Due to the 
stiffness of the whole system a low-order scheme seems preferable. Equations (3) and 
(4) are therefore linearized and explicitly solved. It turns out that this simple approach 
yields sufficiently accurate results for all practical applications. The integration step- 
width is calculated from 

where s is a given limit. Choosing for s a typical value of 0.01, even after 400 integra- 
tion steps the error in T, is only a few percent. Especially for the D,( it is more reason- 
able to look at the error in the time for reaching a particular ionization structure 
than to examine the values of Dzi after a given time. Here, too, we find an error of 
only a few percent for s = 0.01 and 400 steps. 
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EXAMPLE FOR APPLICATION 

To illustrate the method described above, a short example is given: We consider a 
tenuous gas with N = 1O-4 cm-3 exposed to thermal bremsstrahlung photons. The 
bremsstrahlung temperature is kept constant at TR = 10’ K. This determines the 
spectral shape of the impinging radiation. The bremsstrahlung intensity is adjusted 
in such a way that an initial equilibrium temperature of T, := Ti = 6,550 K is 
obtained. In this equilibrium (defined by i’, = i’i = 0, BZi = 0 for all z, i) the ratio 
of ionized to neutral hydrogen is 0.25. Starting from this arbitrarily chosen initial 
state we assume the bremsstrahlung intensity to be suddenly increased by a factor 104. 
The gas reacts by increasing the ion and electron temperature and the ionization state 
in a characteristic manner. After 6 x 1015 set when a new equilibrium is reached, the 
photon intensity is reduced again by a factor IO4 to its original value. However, as 
illustrated in Fig. 1, the gas does not return to the initial equilibrium. This results 
from the very different timescales of recombination and cooling in our example. 

ACKNOWLEDGMENTS 

The author is very much indebted to M. Grewing for many helpful discussions and critically 
reading the manuscript. This work has been supported by the Deutsche Forschungsgemeinschaft 
through a grant to the Sonderforschungsbereich Radioastronomie. 

REFERENCE 

1. A. DALGARNO AND R. A. MCCRAY, Ann. Rev. Astron. Astrophys. 10 (1972). 

RECEIVED: September 20, 1977; REVISED: November 30, 1977 

PAUL-R• LF PREUSSNER 

Institut fiir Astrophysik 
UniversitZit Bonn 

Federal Republic of Germany 


